PATENT ABSTRACTS OF JAPAN

(11)Publication number:

04-111800

(43)Date of publication of application: 13.04.1992

(51)Int.CI.

B26F 3/00 C03B 33/00

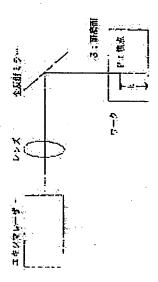
(21)Application number: 02-229891

(71)Applicant: NIPPON SEKIEI GLASS KK

YAMAGUCHI NIPPON SEKIEI KK

(22)Date of filing:

31.08.1990


(72)Inventor: KUZUU SHIN

(54) CUTTING WORK PROCESS OF TRANSPARENT MATERIAL

(57)Abstract:

PURPOSE: To carry out a cutting work on a transparent material into a complex configuration by radiating a high energy beam, which is not absorbed into the transparent material, inside of the transparent material while focusing the beam.

CONSTITUTION: A high energy beam, which is not absorbed into a transparent material, is radiated inside of the transparent material through an optical system constituted from lenses or mirrors while focusing the high energy beam. Thereby, an extremely small crack of not more than several ten microns is generated at a point where the high energy beam has been radiated. While moving the radiating position by this high energy beam, the consecutive crack is generated in the transparent material so that a cutting work on the transparent material can be carried out.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

⑲ 日本国特許庁(JP)

⑪特許出願公開

⑫ 公 開 特 許 公 報 (A)

平4-111800

®Int. Cl. 5

識別記号

庁内整理番号

❸公開 平成4年(1992)4月13日

B 26 F 3/00 C 03 B 33/00 Z 8709-3C 9041-4G

審査請求 未請求 請求項の数 4 (全3頁)

60発明の名称

透明材料の切断加工方法

②特 願 平2-229891

②出 願 平2(1990)8月31日

@発明者

生

山口県新南陽市政所 4丁目10番3の415号

の出 願 ノ

日本石英硝子株式会社

東京都中央区京橋3丁目2番4号

勿出 願 人 山口日

山口日本石英株式会社

東京都中央区京橋3丁目2番4号

⑩代理人 弁

弁理士 浅野 豊司

明細醬

1 発明の名称

透明材料の切断加工方法

2 特許請求の範囲

- (1)透明材料に吸収されない高エネルギービームを透明材料内部に焦点を結ばせて照射することを特徴とする透明材料の切断加工方法。
- (2) 特許請求の範囲第1項において、透明材料の下側に高エネルギーピームの焦点を合せ、次に、 上方に焦点を移動させる透明材料の切断加工方法。
- (3)特許請求の範囲第1項ないし第2項のいずれかにおいて、透明材料は石英ガラスである透明材料の切断加工方法。
- (4) 特許請求の範囲第1項ないし第3項のいずれかにおいて、高エネルギービームはエキシマレーザである透明材料の切断加工方法。

2. 発明の詳細な説明

[産業上の利用分野]

本発明は、石英ガラスなどの種々の透明材料を

切断加工する方法に関する。

[従来の技術]

従来、石英ガラスなどの種々の透明材料を切断加工する方法として、バンドソーや内周刃などの直線的な切断機や、コアドリル、円筒研削機などの円形の加工機械が使用され直線状または、円筒状の加工がおこなわれている。

また、不定形の切断加工には炭酸ガスレーザを 使用したレーザ加工機等が使用されている。

[発明が解決しようとする課題]

従来の切断加工機械のパンドソーや、内周刃などでは直線的な切断加工のみであり、また、内間のカロのの円形の加工機械使用の内形の切断のみであり、複雑な加工には使用切断をがあるた。炭酸ガスレーザを利用したレーザリスを のでは、炭酸ガスレーザビームの皮にはがある。 が透過しないため、材料表面部に集光しり内のでする。 が透過して行くが、この場合溶断表面よりレーザビーなのによりレーザビームのがである。 がさえぎられるので、溶断する厚さに対し、 がさえぎられるので、溶断する厚さに対し、 があり、現状では10㎜程度が限界である。

本発明は、石英ガラスなどの透明材料を複雑な形状に切断加工することを目的とし、被加工物の厚味に影響を受けず、厚板であっても自由な切断加工を可能とすることを目的としている。

[課題を解決するための手段]

そこで、本発明は、石英ガラスなどの透明材料 に吸収されない高エネルギービームを透明材料内 部に焦点を結ばせて照射し、透明材料内部に微小 なクラックを発生させることによって透明材料を 切断加工しようとするものである。

透明材料としては、例えば、光学ガラス、石英ガラスなどの無機ガラス、アクリル樹脂などの透明樹脂等が挙げられる。

高エネルギービームとしては、XeF (351 nm), XeC1 (308 nm), KrF (248 nm), ArF (193 nm) 等のエキシマレーザーや、YAGレーザ及びその高調液等が挙げられる。

透明材料の高エネルギーピームに対する吸収特

ービームの照射された個所に数十ミクロン以下の 微小なクラックが発生する。 高エネルギービーム の照射位配を移動させて、透明材料に連続的なク ラックを発生させることによって透明材料を切断 加工する。

クラックの発生について更に詳しく説明する。 固体中では、荷電子のエネルギー準位は帯状の いわゆるバンド構造をとっている。 絶縁体ではバ ンドギャップ以下のフォトンエネルギーのフォト ン、すなわち、長波長の光は吸収しない。

しかし、パンドギャップよりも低エネルギーの 光でも、レンズで集光するなどしてフォトン密度 を極端に高くすると、2個あるいは、それ以上の フォトンを同時に吸収することにより、電子が充 満春(エネルギーギャップよりエネルギーの低い エネルギーバンド)から伝導帯(エネルギーギャップよりエネルギーが高く、通常の状態では電子 の存在しないエネルギーバンド)に励起される。

このように、フォトンを同時に2個吸収することを2光子吸収、さらに一般に複数個吸収するこ

性に応じて、適切な高エネルギービームを選択する必要がある。

高エネルギービームは、100Hz以上の高く りかえし間波数の方が効率的である。

焦点の移動は、光学的に焦点位置を移動させて も、また、ワークを移動させても良く、操作しや すい方法を適宜選択できる。

焦点は、最初ワークの下側にあわせ、それから 上方に移動させるのが効率的である。最初に、ワ ークの上方に焦点を合せると、切断部分により高 エネルギービームが部分的に切断されてしまい作 変効率が悪くなるからである。

高エネルギービームが通過する表面は研磨して おき、ビームが表面で散乱するのを防止し、焦点 位置にビームが集中するようにするのが好ましい。 [作用]

透明材料に吸収されない高エネルギービームを、 レンズやミラーから構成される光学系を介して透明材料の内部に焦点を合せ、高エネルギービーム を透明材料内部に照射する。すると、高エネルギ

とを多光子吸収という。

この発明においては、多光子吸収を利用して、 バンドギャップよりエネルギーが低く、本来、吸 収の起こらない波長の光を透明材料に吸収させる ことにより、透明材料の結合ボンドを切断したり、 あるいは、発熱を利用して微小なクラックを透明 材料内部に発生させるのである。

石英ガラスでは、このパンドギャップは約9 e V (140 n m) である。石英ガラス中に不純物 や欠陥構造が無い限り、パンドギャップよりも低 エネルギー、すなわち、長波長の光は、通常吸収 しない。

ここでエキシマレーザの波長とフォトンエネル ギーを以下に示す。

極類	波長(nm)	フォトンエネルギー(eV)	励起に必要な フォトン数
ArF	193	6.4	2
KrF	248	5.0	2
X e C.1	308	4.0	3
ХeF	351	3.5	3

特開平4-111800 (3)

したがって、エキシマレーザはすべて波長が140nmより長いので、通常は吸収が起きないはずである。しかし、前記の、多光子吸収によって吸収が起こり、このため結合ボンドの関裂あるいは発熱作用を生じ微細なクラックが内部に発生するのである。

荷電子を充満帯から伝導帯に励起するのに必要なフォトン数は、石英ガラスのバンドギャップ9eVを超えるために必要な個数である。

[実施例]

次に、本発明を実施例によってさらに詳しく説 明する。

実施例1

透明材料として 1 5 0 × 1 5 0 × 1 5 0 mの合成石英ガラス (OH 1 3 0 0 p p m 含有)を使用し、高エネルギーピームとしては、不安定共振器を用いたエキシマレーザ (K r F 2 4 8 n m エネルギー密度 5 0 m J / od・パルス、くり返し周波数 1 5 0 H z)を使用し、焦点距離 5 0 0 m m のレンズで集光し、ミラーで反射させ、上

の内部に発生する。これを連続させることによっ て透明材料を複雑な形状に切断加工できる。

焦点をワークの内部に結ばせているのでワーク の厚味に影響を受けず、自由な形状に加工できる。

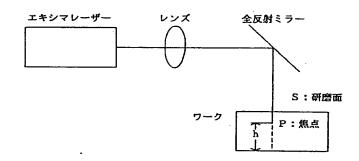
焦点の移動をコンピュタにプログラムしておく ことによって、円錐形、ひょうたん型など、その 形状は制約を受けないといってよいものである。

4. 図面の簡単な説明

第1図は本発明の概念図である。

而を予め研辟したワークである厚板の合成石炭ガラスの内部にエキシマレーザピームの焦点を合せエキシマレーザをワークの上面から照射し、ワークを3 r.p.mの回転数で回転させながら、焦点の位置を3mm/minの速さでワーク底面より引き上げることにより、直径30mmの円筒形の孔を開けた。

このとき、ワーク内部におけるエキシマレーザ のピームの垂直方向の焦点位置は、レンズの位置 を移動させることによって変化させた。


また、ワーク内部での焦点位置の水平方向の移動は、ワーク自体を水平方向に移動させることによっておこなった。

切断に当っては、焦点位置は、ワークの底面か ら上方向に移動させた。

[効果]

以上、述べてきたように、透明材料の内部に焦 点をあわせ、透明材料に対し吸収の無い高エネル ギービーム、例えば、石英ガラスに対しエキシマ レーザを照射すると、微細なクラックが透明材料

才 1 図

特許出願人 日本石英硝子株式会社 山口日本石英株式会社 代理人 弁理士 淺野 覽可